资源类型

期刊论文 505

会议视频 14

年份

2023 49

2022 61

2021 57

2020 49

2019 25

2018 26

2017 28

2016 42

2015 29

2014 19

2013 15

2012 21

2011 17

2010 14

2009 10

2008 10

2007 11

2006 5

2005 5

2004 4

展开 ︾

关键词

食物安全 11

可持续发展 7

能源安全 6

农业科学 5

环境 5

信息安全 4

网络空间安全 4

京津冀 2

人工神经网络 2

农业发展 2

发展战略 2

国家安全 2

微波遥感 2

水安全 2

网络安全 2

能源结构 2

膨胀土 2

重金属 2

风化砂 2

展开 ︾

检索范围:

排序: 展示方式:

Soil security and global food security

《农业科学与工程前沿(英文)》 doi: 10.15302/J-FASE-2023530

摘要:

● Much of the world’s agricultural land has been degraded through soil loss and degradation of soil organic matter.

关键词: Agriculture     soil security     food security     regenerative    

Managing soil quality for humanity and the planet

Rattan LAL

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 251-253 doi: 10.15302/J-FASE-2020329

摘要:

Rather than a human-centric, the basic strategy of achieving Sustainable Development Goals must be focused on restoring and sustaining planetary processes. The urgency of meeting the demands of the humanity must be reconciled with the necessity of enhancing the environment. Increasing and restoring soil organic matter content of the degraded and depleted soils is critical to strengthening planetary processes.

关键词: soil quality     humanity     planet     climate change     soil carbon sequestration     food and nutritional security    

Managing nutrient for both food security and environmental sustainability in China: an experiment for

Fusuo ZHANG, Zhenling CUI, Weifeng ZHANG

《农业科学与工程前沿(英文)》 2014年 第1卷 第1期   页码 53-61 doi: 10.15302/J-FASE-2014006

摘要: The challenges of how to simultaneously ensure global food security, improve nitrogen use efficiency (NUE) and protect the environment have received increasing attention. However, the dominant agricultural paradigm still considers high yield and reducing environmental impacts to be in conflict with one another. Here we examine a Three-Step-Strategy of past 20 years to produce more with less in China, showing that tremendous progress has been made to reduce N fertilizer input without sacrificing crop yield. The first step is to use technology for in-season root-zone nutrient management to significantly increase NUE. The second is to use technology for integrated nutrient management to increase both yield and NUE by 15%–20%. The third step is to use technology for integrated soil-crop system management to increase yield and NUE by 30%–50% simultaneously. These advances can thus be considered an effective agricultural paradigm to ensure food security, while increasing NUE and improving environmental quality.

关键词: integrated nutrient management     integrated soil-crop system management     environmental protection     food security     resource use efficiency    

A potential solution for food security in Kenya: implications of the Quzhou model in China

Xiaoqiang JIAO, Jianbo SHEN, Fusuo ZHANG

《农业科学与工程前沿(英文)》 2020年 第7卷 第4期   页码 406-417 doi: 10.15302/J-FASE-2020359

摘要: Poor soil fertility due to low nutrient inputs is a major factor limiting grain production in Kenya. Increasing soil fertility for crop productivity in China has implications for food security in Kenya. The purpose of this study was therefore to investigate the historical patterns of grain production, nutrient inputs, soil fertility and policies in Quzhou, a typical agricultural county on the North China Plain, and to compare grain production in Quzhou County and Kenya to identify a potential approach for increasing grain production in Kenya. Grain yields in Quzhou increased from 1 to 3 t·ha between 1961 and 1987 by increasing manure application accompanied by small amounts of chemical fertilizer after soil desalinization. There was a further increase from 3 to 5 t·ha up to 1996 which can be mainly attributed to chemical fertilizer use and policy support. Hence, a beneficial cycle between soil fertility and plant growth in Quzhou grain production was developed and strengthened. In contrast, there was only a slight increase in grain yields in Kenya over this period, resulting from low soil fertility with limited external nutrient inputs, a consequence of poor socioeconomic development. It is suggested that grain yields in Kenya would likely be boosted by the development of a self-reinforcing cycling between soil fertility and plant growth with manure and chemical fertilizer use if supported by policy and socioeconomic development.

关键词: China     grain production     Kenya     soil fertility    

Producing more with less: reducing environmental impacts through an integrated soil-crop system management

Zhenling CUI, Zhengxia DOU, Hao YING, Fusuo ZHANG

《农业科学与工程前沿(英文)》 2020年 第7卷 第1期   页码 14-20 doi: 10.15302/J-FASE-2019295

摘要:

Balancing crop productivity with resource use efficiency and beneficial environmental consequences is essential for sustainable agricultural development worldwide. Various strategies and approaches have been proposed and debated, but turning the concept into management practices in the field with measurable outcomes over several scales remains a challenge. An innovative approach, Integrated Soil-Crop System Management (ISSM), for producing more grain with greater nutrient use efficiencies and less environmental pollution is presented. The ISSM approach has been used in China, in field experiments as well as in thousands of farmer fields, to substantially increase the yields of maize, rice and wheat while simultaneously increasing nitrogen use efficiency and reducing environmental footprints. The scientific principle, implementation strategy and procedures of ISSM are discussed and examples of its demonstrated successes at local and regional levels across China are given. Perspectives for further development of ISSM and expanding its potential impact are also proposed and discussed.

关键词: China     environmental protection     food security     high-yielding     nitrogen management    

Protein security and food security in China

Zheng RUAN,Shumei MI,Yan ZHOU,Zeyuan DENG,Xiangfeng KONG,Tiejun LI,Yulong YIN

《农业科学与工程前沿(英文)》 2015年 第2卷 第2期   页码 144-151 doi: 10.15302/J-FASE-2015062

摘要: Food security, the need to meet nutritional requirements, and four main problems for food protein security in China are analyzed. From the perspective of residents’ nutritional requirements and balanced dietary patterns, the conclusion is that food security in China is in essence dependent on protein production and security of supply and that fat and carbohydrates supply in China can reach self-sufficiency. Considering the situation of food protein production and consumption in China, policy suggestions are made, which could ensure a balanced supply and demand for food protein and food security in China.

关键词: food security     protein security     nutrition     dietary pattern    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns

Hiruy ABDU, David A. ROBINSON, Janis BOETTINGER, Scott B. JONES

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 135-145 doi: 10.15302/J-FASE-2017143

摘要: Knowledge of the spatial distribution of soil textural properties is important for determining soil moisture storage and soil hydraulic transport properties. Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Our objective was to employ electromagnetic induction (EMI) mapping in low apparent electrical conductivity (EC ) soils at varying soil water contents to capture time invariant properties such as soil texture. Georeferenced EC measurements were taken using a ground conductivity meter on six different days where volumetric water content ( ) varied from 0.11 to 0.23. The 50 m × 50 m field included a subsurface gravelly patch in an otherwise homogeneous silt-loam alluvial soil. Ordinary block kriging predicted EC at unsampled areas to produce 1-m resolution maps. Temporal stability analysis was used to divide the field into three distinct EC regions. Subsequent ground-truthing confirmed the lowest conductivity region correlated with coarse textured soil parent materials associated with a former high-energy alluvial depositional area. Combining maps using temporal stability analysis gives the clearest image of the textural difference. These maps could be informative for modeling, experimental design, sensor placement and targeted zone management strategies in soil science, ecology, hydrology, and agricultural applications.

关键词: soil electrical conductivity     soil texture mapping     temporal stability analysis    

SOIL CARBON CHECK: A TOOL FOR MONITORING AND GUIDING SOIL CARBON SEQUESTRATION IN FARMER FIELDS

《农业科学与工程前沿(英文)》 2023年 第10卷 第2期   页码 248-261 doi: 10.15302/J-FASE-2023499

摘要:

● Establishment of a rapid tool for monitoring soil carbon sequestration in farmer fields.

关键词: 4 per 1000 initiative     carbon sequestration     climate action     farmer fields     SDG13     soil organic carbon     soil testing    

Adsorption behavior of antibiotic in soil environment: a critical review

Shiliang WANG,Hui WANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 565-574 doi: 10.1007/s11783-015-0801-2

摘要: Antibiotics are used widely in human and veterinary medicine, and are ubiquitous in environment matrices worldwide. Due to their consumption, excretion, and persistence, antibiotics are disseminated mostly via direct and indirect emissions such as excrements, sewage irrigation, and sludge compost and enter the soil and impact negatively the natural ecosystem of soil. Most antibiotics are amphiphilic or amphoteric and ionize. A non-polar core combined with polar functional moieties makes up numerous antibiotic molecules. Because of various molecule structures, physicochemical properties vary widely among antibiotic compounds. Sorption is an important process for the environment behaviors and fate of antibiotics in soil environment. The adsorption process has decisive role for the environmental behaviors and the ultimate fates of antibiotics in soil. Multiply physicochemical properties of antibiotics induce the large variations of their adsorption behaviors. In addition, factors of soil environment such as the pH, ionic strength, metal ions, and organic matter content also strongly impact the adsorption processes of antibiotics. Review about adsorption of antibiotics on soil can provide a fresh insight into understanding the antibiotic-soil interactions. Therefore, literatures about the adsorption mechanisms of antibiotics in soil environment and the effects of environment factors on adsorption behaviors of antibiotics in soil are reviewed and discussed systematically in this review.

关键词: adsorption     antibiotics     environment factors     soil    

A simplified method for the determination of vertically loaded pile-soil interface parameters in layeredsoil based on FLAC

Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 103-111 doi: 10.1007/s11709-015-0328-4

摘要: The numerical analysis of pile-soil interaction commonly requires a lot of trial works to determine the interface parameters and the accuracy cannot be ensured normally. Considering this, this paper first conducts a sensitivity analysis to figure out the influence of interface parameters on the bearing behavior of a single pile in sand. Then, a simplified method for the determination of pile-soil interface parameters in layered soil is proposed based on the parameter studies. Finally, a filed loading test is used for the validation of the simplified method, and the calculated results agree well with the monitoring data. In general, the simplified method proposed in this paper works with higher accuracy and consumes less time compared with the traditional trial works, especially on the determinations of interfacial cohesive and interfacial friction angle.

关键词: determination of interface parameters     pile-soil interaction     FLAC3D     sensitivity analysis     layered soil    

Fictitious soil pile model for dynamic analysis of pipe piles under high-strain conditions

《结构与土木工程前沿(英文)》   页码 915-934 doi: 10.1007/s11709-023-0907-8

摘要: A fictitious soil pile (FSP) model is developed to simulate the behavior of pipe piles with soil plugs undergoing high-strain dynamic impact loading. The developed model simulates the base soil with a fictitious hollow pile fully filled with a soil plug extending at a cone angle from the pile toe to the bedrock. The friction on the outside and inside of the pile walls is distinguished using different shaft models, and the propagation of stress waves in the base soil and soil plug is considered. The motions of the pile−soil system are solved by discretizing them into spring-mass model based on the finite difference method. Comparisons of the predictions of the proposed model and conventional numerical models, as well as measurements for pipe piles in field tests subjected to impact loading, validate the accuracy of the proposed model. A parametric analysis is conducted to illustrate the influence of the model parameters on the pile dynamic response. Finally, the effective length of the FSP is proposed to approximate the affected soil zone below the pipe pile toe, and some guidance is provided for the selection of the model parameters.

关键词: fictitious soil pile     soil plug     pipe piles     high-strain dynamic analysis     one-dimensional wave theory     pile dynamics    

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 198-204 doi: 10.1007/s11709-007-0023-1

摘要: The intensive soil-water interaction in unsaturated expansive soil is one of the major reasons for slope failures. In this paper, the soil-water interaction is investigated with the full-scale field inspection of rainwater infiltration and comprehensive experiments, including wetting-induced softening tests, swelling, and shrinkage tests. It is demonstrated that the soil-water interaction induced by seasonal wetting-drying cycles is very complex, and it involves coupled effects among the changes in water content, suction, stress, deformation and shear strength. In addition, the abundant cracks in the expansive soil play an important role in the soil-water interaction. The cracks disintegrate the soil mass, and more importantly, provide easy pathways for rainfall infiltration. Infiltration of rainwater not only results in wetting-induced softening of the shallow unsaturated soil layers, but also leads to the increase of horizontal stress. The increase of horizontal stress may lead to a local passive failure. The seasonal wetting-drying cycles tend to result in a down-slope creeping of the shallow soil layer, which leads to progressive slope failure.

关键词: strength     intensive soil-water     comprehensive     Infiltration     wetting-induced softening    

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1377-z

摘要:

• Sulfidation significantly enhanced As(V) immobilization in soil by zerovalent iron.

关键词: Soil     As(V)     Sulfidation     Zero-valent iron     Magnetic separation    

INTERCROPPING SUSTAINABLY INCREASES YIELDS AND SOIL FERTILITY

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 659-661 doi: 10.15302/J-FASE-2021418

标题 作者 时间 类型 操作

Soil security and global food security

期刊论文

Managing soil quality for humanity and the planet

Rattan LAL

期刊论文

Managing nutrient for both food security and environmental sustainability in China: an experiment for

Fusuo ZHANG, Zhenling CUI, Weifeng ZHANG

期刊论文

A potential solution for food security in Kenya: implications of the Quzhou model in China

Xiaoqiang JIAO, Jianbo SHEN, Fusuo ZHANG

期刊论文

Producing more with less: reducing environmental impacts through an integrated soil-crop system management

Zhenling CUI, Zhengxia DOU, Hao YING, Fusuo ZHANG

期刊论文

Protein security and food security in China

Zheng RUAN,Shumei MI,Yan ZHOU,Zeyuan DENG,Xiangfeng KONG,Tiejun LI,Yulong YIN

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns

Hiruy ABDU, David A. ROBINSON, Janis BOETTINGER, Scott B. JONES

期刊论文

SOIL CARBON CHECK: A TOOL FOR MONITORING AND GUIDING SOIL CARBON SEQUESTRATION IN FARMER FIELDS

期刊论文

Adsorption behavior of antibiotic in soil environment: a critical review

Shiliang WANG,Hui WANG

期刊论文

A simplified method for the determination of vertically loaded pile-soil interface parameters in layeredsoil based on FLAC

Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG

期刊论文

Fictitious soil pile model for dynamic analysis of pipe piles under high-strain conditions

期刊论文

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

期刊论文

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

期刊论文

INTERCROPPING SUSTAINABLY INCREASES YIELDS AND SOIL FERTILITY

期刊论文